PEST is a modern testing framework for PHP that focuses on clean syntax, readability, and developer experience. It builds on PHPUnit but provides a much more expressive and minimalistic interface.
π PEST = "PHP Testing for Humans"
It’s designed for developers who want to write fast, readable, and elegant tests — with less boilerplate.
PEST is built on top of PHPUnit, but it:
Provides a cleaner, simpler syntax
Removes unnecessary structure
Encourages a functional, behavior-driven style
Still supports traditional PHPUnit classes if needed
PHPUnit:
class UserTest extends TestCase
{
public function test_user_has_name()
{
$user = new User('John');
$this->assertEquals('John', $user->name);
}
}
PEST:
it('has a name', function () {
$user = new User('John');
expect($user->name)->toBe('John');
});
π Much shorter and easier to read — especially when writing many tests.
β Elegant, expressive syntax (inspired by Jest/Mocha)
π§ͺ Supports unit, feature, API, and browser-based testing
π§± Data-driven testing via with([...])
𧬠Test hooks like beforeEach()
/ afterEach()
π¨ Fully extensible with plugins and custom expectations
π Fully compatible with PHPUnit — you can run both side by side
In a Laravel or Composer project:
composer require pestphp/pest --dev
php artisan pest:install # for Laravel projects
Then run tests:
./vendor/bin/pest
PEST is ideal if you:
Want to write tests that are fun and easy to maintain
Prefer clean, modern syntax
Already use PHPUnit but want a better experience
π‘ Many Laravel developers are adopting PEST because it integrates seamlessly with Laravel and truly makes testing feel "human" — just like its slogan says.
OPcache is a built-in bytecode caching extension for PHP that significantly improves performance by precompiling PHP code and storing it in memory (RAM).
Normally, every PHP request goes through:
Reading the PHP source file
Parsing and compiling it into bytecode
Executing the bytecode
With OPcache, this process happens only once. After the first request, PHP uses the precompiled bytecode from memory, skipping the parsing and compiling steps.
Benefit | Description |
---|---|
β‘ Faster performance | Eliminates redundant parsing and compiling |
π§ Reduced CPU usage | Lower system load, especially under high traffic |
πΎ In-memory execution | No need to read PHP files from disk |
π‘οΈ More stable and secure | Reduces risks from dynamically loaded or poorly written code |
php -i | grep opcache.enable
Or in code:
phpinfo();
π¦ Typical Configuration (php.ini
)
opcache.enable=1
opcache.memory_consumption=128
opcache.interned_strings_buffer=8
opcache.max_accelerated_files=10000
opcache.validate_timestamps=1
opcache.revalidate_freq=2
π‘ In production, it’s common to set
opcache.validate_timestamps=0
— meaning PHP won’t check for file changes on every request. This gives even more performance, but you’ll need to manually reset the cache after code updates.
OPcache is especially helpful for:
Via PHP:
opcache_reset();
Or from the command line:
php -r "opcache_reset();"
OPcache is a simple but powerful performance booster for any PHP application. It should be enabled in every production environment — it’s free, built-in, and drastically reduces load times and server strain.
Deployer is an open-source deployment tool for PHP projects — specifically designed to automate, standardize, and securely deploy applications like Laravel, Symfony, Magento, WordPress, or any custom PHP apps.
It’s a CLI tool, written in PHP.
You define your deployment process in a deploy.php
configuration file with clearly defined tasks.
It supports zero-downtime deployment using symbolic links (symlinks).
It supports multi-environment deployments (e.g., staging, production).
Install Deployer via Composer:
composer require deployer/deployer --dev
Generate a config template:
vendor/bin/dep init
Configure deploy.php
, e.g., for Laravel:
host('my-server.com')
->set('deploy_path', '/var/www/myproject')
->set('branch', 'main');
task('deploy', [
'deploy:prepare',
'deploy:vendors',
'artisan:migrate',
'deploy:publish',
]);
Deploy your app:
vendor/bin/dep deploy production
Deployer:
Connects to the server via SSH
Clones your Git repo into a new release directory
Installs Composer dependencies
Runs custom tasks (e.g., php artisan migrate
)
Updates the symlink to point to the new release (current
)
Removes old releases if configured
Benefit | Description |
---|---|
π Fast & scriptable | Fully CLI-driven |
π Rollback support | Instantly roll back to previous working release |
βοΈ Highly customizable | Define your own tasks, hooks, conditions |
π§© Presets available | Laravel, Symfony, WordPress, etc. |
π Secure by default | Uses SSH — no FTP needed |
Laravel Octane is an official package for the Laravel framework that dramatically boosts application performance by running Laravel on high-performance application servers like Swoole or RoadRunner.
Instead of reloading the Laravel framework on every HTTP request (as with traditional PHP-FPM setups), Octane keeps the application in memory, avoiding repeated bootstrapping. This makes your Laravel app much faster.
Laravel Octane uses persistent worker servers (e.g., Swoole or RoadRunner), which:
Bootstrap the Laravel application once,
Then handle incoming requests repeatedly without restarting the framework.
Benefit | Description |
---|---|
β‘ Faster performance | Up to 10x faster than traditional PHP-FPM setups |
π Persistent workers | No full reload on every request |
π WebSockets & real-time support | Built-in support via Swoole/RoadRunner |
π§΅ Concurrency | Parallel task handling possible |
π§ Built-in tools | Task workers, route reload watching, background tasks, etc. |
RoadRunner is a high-performance PHP application server developed by Spiral Scout. It serves as a replacement for traditional PHP-FPM (FastCGI Process Manager) and offers a major performance boost by keeping your PHP application running persistently — especially useful with frameworks like Laravel or Symfony.
PHP scripts are not reloaded on every request. Instead, they run continuously in persistent worker processes (similar to Node.js or Swoole).
This eliminates the need to re-bootstrap the framework on every request — resulting in significantly faster response times than with PHP-FPM.
RoadRunner is written in the programming language Go, which provides high concurrency, easy deployment, and great stability.
Native HTTP server (with HTTPS, Gzip, CORS, etc.)
PSR-7 and PSR-15 middleware support
Supports:
Hot reload support with a watch plugin
RoadRunner starts PHP worker processes.
These workers load your full framework bootstrap once.
Incoming HTTP or gRPC requests are forwarded to the PHP workers.
The response is returned through the Go layer — fast and concurrent.
Laravel + RoadRunner (instead of Laravel + PHP-FPM)
High-traffic applications and APIs
Microservices
Real-time apps (e.g., using WebSockets)
Low-latency, serverless-like services
Feature | PHP-FPM | RoadRunner |
---|---|---|
Bootstraps per request | Yes | No (persistent workers) |
Speed | Good | Excellent |
WebSocket support | No | Yes |
gRPC support | No | Yes |
Language | C | Go |
GitHub Actions is a feature of GitHub that lets you create automated workflows for your software projects—right inside your GitHub repository.
You can build CI/CD pipelines (Continuous Integration / Continuous Deployment), such as:
β Automatically test code (e.g. with PHPUnit, Jest, Pytest)
π οΈ Build your app on every push or pull request
π Automatically deploy (e.g. to a server, cloud platform, or DockerHub)
π¦ Create releases (e.g. zip packages or version tags)
π Run scheduled tasks (cronjobs)
GitHub Actions uses workflows, defined in a YAML file inside your repository:
Typically stored as .github/workflows/ci.yml
You define events (like push
, pull_request
) and jobs (like build
, test
)
Each job consists of steps, which are shell commands or prebuilt actions
name: CI
on: [push]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: '20'
- run: npm install
- run: npm test
An Action is a single reusable step in a workflow. You can use:
Prebuilt actions (e.g. actions/checkout
, setup-node
, upload-artifact
)
Custom actions (e.g. shell scripts or Docker-based logic)
You can explore reusable actions in the GitHub Marketplace.
Saves time by automating repetitive tasks
Improves code quality through automated testing
Enables consistent, repeatable deployments
Integrated directly in GitHub—no need for external CI tools like Jenkins or Travis CI
Docker Compose is a tool that lets you define and run multi-container Docker applications using a single configuration file. Instead of starting each container manually via the Docker CLI, you can describe all your services (like a web app, database, cache, etc.) in a docker-compose.yml
file and run everything with a single command.
Docker Compose = Project config + Multiple containers + One command to run it all
docker-compose.yml
version: '3.9'
services:
web:
build: .
ports:
- "5000:5000"
volumes:
- .:/code
redis:
image: "redis:alpine"
This file:
Builds and runs a local web app container
Starts a Redis container from the official image
Automatically networks the two containers
docker-compose up # Start all services in the foreground
docker-compose up -d # Start in detached (background) mode
docker-compose down # Stop and remove containers, networks, etc.
β
Easy setup for multi-service applications
β
Version-controlled config (great for Git)
β
Reproducible development environments
β
Simple startup/shutdown of entire stacks
Local development with multiple services (e.g., web app + DB)
Integration testing with full stack
Simple deployment workflows (e.g., via CI/CD)
Contentful is a headless content management system (headless CMS). It allows businesses to manage content centrally and deliver it flexibly to various channels—such as websites, apps, or digital displays—via APIs.
Traditional CMS platforms (like WordPress) handle both content management and content presentation (e.g., rendering on a website). A headless CMS separates the content backend from the presentation frontend—hence the term “headless,” as the “head” (the frontend) is removed.
Flexible content modeling: You can define your own content types (e.g., blog posts, products, testimonials) with customizable fields.
Multi-language support: Well-suited for managing multilingual content.
Cloud-based: No server maintenance needed.
Integration-friendly: Works well with tools like React, Vue, Next.js, Shopify, SAP, etc.
Companies with multiple delivery channels (websites, apps, smartwatches, etc.)
Large brands with global content needs
Developer teams seeking a scalable and flexible CMS
A Prepared Statement is a programming technique, especially used when working with databases, to make SQL queries more secure and efficient.
It consists of two steps:
Prepare the SQL query with placeholders
Example in SQL:
SELECT * FROM users WHERE username = ? AND password = ?
(Some languages use :username
or other types of placeholders.)
Bind parameters and execute
The real values are bound later, for example:
$stmt->bind_param("ss", $username, $password);
$stmt->execute();
β
Protection against SQL injection:
User input is treated separately and safely, not directly inserted into the SQL string.
β
Faster with repeated use:
The SQL query is parsed once by the database server and can be executed multiple times efficiently (e.g., in loops).
$conn = new mysqli("localhost", "user", "pass", "database");
$stmt = $conn->prepare("SELECT * FROM users WHERE email = ?");
$stmt->bind_param("s", $email); // "s" stands for string
$email = "example@example.com";
$stmt->execute();
$result = $stmt->get_result();
A Prepared Statement separates SQL logic from user input, making it a secure (SQL Injection) and recommended practice when dealing with databases.
An Entity Manager is a core component of ORM (Object-Relational Mapping) frameworks, especially in Java (JPA – Java Persistence API), but also in other languages like PHP (Doctrine ORM).
Persisting:
Finding/Loading:
Retrieves an object by its ID or other criteria.
Example: $entityManager->find(User::class, 1);
Updating:
Tracks changes to objects and writes them to the database (usually via flush()
).
Removing:
Deletes an object from the database.
Example: $entityManager->remove($user);
Managing Transactions:
Begins, commits, or rolls back transactions.
Handling Queries:
Executes custom queries, often using DQL (Doctrine Query Language) or JPQL.
The Entity Manager tracks the state of entities:
managed (being tracked),
detached (no longer tracked),
removed (marked for deletion),
new (not yet persisted).
$user = new User();
$user->setName('Max Mustermann');
$entityManager->persist($user); // Mark for saving
$entityManager->flush(); // Write to DB
The Entity Manager is the central component for working with database objects — creating, reading, updating, deleting. It abstracts SQL and provides a clean, object-oriented way to interact with your data layer.