Write-Through is a caching strategy that ensures every change (write operation) to the data is synchronously written to both the cache and the underlying data store (e.g., a database). This ensures that the cache is always consistent with the underlying data source, meaning that a read access to the cache always provides the most up-to-date and consistent data.
Write-Through is a caching strategy that ensures consistency between the cache and data store by performing every change on both storage locations simultaneously. This strategy is particularly useful when consistency and simplicity are more critical than maximizing write speed. However, in scenarios with frequent write operations, the increased latency can become an issue.
Closed Source (also known as Proprietary Software) refers to software whose source code is not publicly accessible and can only be viewed, modified, or distributed by the owner or developer. In contrast to Open Source software, where the source code is made publicly available, Closed Source software keeps the source code strictly confidential.
Protected Source Code: The source code is not visible to the public. Only the developer or the company owning the software has access to it, preventing third parties from understanding the internal workings or making changes.
License Restrictions: Closed Source software is usually distributed under restrictive licenses that strictly regulate usage, modification, and redistribution. Users are only allowed to use the software within the terms set by the license.
Access Restrictions: Only authorized developers or teams within the company have permission to modify the code or add new features.
Commercial Use: Closed Source software is often offered as a commercial product. Users typically need to purchase a license or subscribe to use the software. Common examples include Microsoft Office and Adobe Photoshop.
Lower Transparency: Users cannot verify the code for vulnerabilities or hidden features (e.g., backdoors). This can be a concern if security and trust are important factors.
Some well-known Closed Source programs and platforms include:
Closed Source software is proprietary software whose source code is not publicly available. It is typically developed and offered commercially by companies. Users can use the software, but they cannot view or modify the source code. This provides benefits in terms of intellectual property protection and quality assurance but sacrifices flexibility and transparency.
Source code (also referred to as code or source text) is the human-readable set of instructions written by programmers to define the functionality and behavior of a program. It consists of a sequence of commands and statements written in a specific programming language, such as Java, Python, C++, JavaScript, and many others.
Human-readable: Source code is designed to be readable and understandable by humans. It is often structured with comments and well-organized commands to make the logic easier to follow.
Programming Languages: Source code is written in different programming languages, each with its own syntax and rules. Every language is suited for specific purposes and applications.
Machine-independent: Source code in its raw form is not directly executable. It must be translated into machine-readable code (machine code) so that the computer can understand and execute it. This translation is done by a compiler or an interpreter.
Editing and Maintenance: Developers can modify, extend, and improve source code to add new features or fix bugs. The source code is the foundation for all further development and maintenance activities of a software project.
A simple example in Python to show what source code looks like:
# A simple Python source code that prints "Hello, World!"
print("Hello, World!")
This code consists of a single command (print
) that outputs the text "Hello, World!" on the screen. Although it is just one line, the interpreter (in this case, the Python interpreter) must read, understand, and translate the source code into machine code so that the computer can execute the instruction.
Source code is the core of any software development. It defines the logic, behavior, and functionality of software. Some key aspects of source code are:
Source code is the fundamental, human-readable text that makes up software programs. It is written by developers to define a program's functionality and must be translated into machine code by a compiler or interpreter before a computer can execute it.
A module in software development is a self-contained unit or component of a larger system that performs a specific function or task. It operates independently but often works with other modules to enable the overall functionality of the system. Modules are designed to be independently developed, tested, and maintained, which increases flexibility and code reusability.
Key characteristics of a module include:
Examples of modules include functions for user management, database access, or payment processing within a software application.
A Modulith is a term from software architecture that combines the concepts of a module and a monolith. It refers to a software module that is relatively independent but still part of a larger monolithic system. Unlike a pure monolith, which is a tightly coupled and often difficult-to-scale system, a modulith organizes the code into more modular and maintainable components with clear separation of concerns.
The core idea of a modulith is to structure the system in a way that allows parts of it to be modular, making it easier to decouple and break down into smaller pieces without having to redesign the entire monolithic system. While it is still deployed as part of a monolith, it has better organization and could be on the path toward a microservices-like architecture.
A modulith is often seen as a transitional step between a traditional monolith architecture and a microservices architecture, aiming for more modularity over time without completely abandoning the complexity of a monolithic system.
Hype Driven Development (HDD) is an ironic term in software development that refers to the tendency to adopt technologies or practices because they are currently trendy, rather than selecting them based on their actual suitability for the project. Developers or companies practicing HDD often embrace new frameworks, tools, or programming languages because they are gaining a lot of attention, without sufficiently analyzing whether these solutions are truly the best fit for their specific needs.
Typical characteristics of HDD include:
Overall, Hype Driven Development often leads to overcomplicated architectures, technical debt, and a significant investment of time in learning constantly changing technologies.
A batch in computing and data processing refers to a group or collection of tasks, data, or processes that are processed together in one go, rather than being handled individually and immediately. It is a collected set of units (e.g., files, jobs, or transactions) that are processed as a single package, rather than processing each unit separately in real-time.
Here are some typical features of a batch:
Collection of tasks: Multiple tasks or data are gathered and processed together.
Uniform processing: All tasks within the batch undergo the same process or are handled in the same manner.
Automated execution: A batch often starts automatically at a specified time or when certain criteria are met, without requiring human intervention.
Examples:
A batch is designed to improve efficiency by grouping tasks and processing them together, often during times when system load is lower, such as overnight.
Batch Processing is a method of data processing where a group of tasks or data is collected as a "batch" and processed together, rather than handling them individually in real time. This approach is commonly used to process large amounts of data efficiently without the need for human intervention while the process is running.
Here are some key features of batch processing:
Scheduled: Tasks are processed at specific times or after reaching a certain volume of data.
Automated: The process typically runs automatically, without the need for immediate human input.
Efficient: Since many tasks are processed simultaneously, batch processing can save time and resources.
Examples:
Batch processing is especially useful for repetitive tasks that do not need to be handled immediately but can be processed at regular intervals.
Contract Driven Development (CDD) is a software development approach that focuses on defining and using contracts between different components or services. These contracts clearly specify how various software parts should interact with each other. CDD is commonly used in microservices architectures or API development to ensure that communication between independent modules is accurate and consistent.
Contracts as a Single Source of Truth:
Separation of Implementation and Contract:
Contract-Driven Testing:
Consumer-Driven Contract
test can be used to ensure that the data and formats expected by the consumer are provided by the provider.Management Overhead:
Versioning and Backward Compatibility:
Over-Documentation:
Contract Driven Development is especially suitable for projects with many independent components where clear and stable interfaces are essential. It helps prevent misunderstandings and ensures that the communication between services remains robust through automated testing. However, the added complexity of managing contracts needs to be considered.
A monolith in software development refers to an architecture where an application is built as a single, large codebase. Unlike microservices, where an application is divided into many independent services, a monolithic application has all its components tightly integrated and runs as a single unit. Here are the key features of a monolithic system:
Single Codebase: A monolith consists of one large, cohesive code repository. All functions of the application, like the user interface, business logic, and data access, are bundled into a single project.
Shared Database: In a monolith, all components access a central database. This means that all parts of the application are closely connected, and changes to the database structure can impact the entire system.
Centralized Deployment: A monolith is deployed as one large software package. If a small change is made in one part of the system, the entire application needs to be recompiled, tested, and redeployed. This can lead to longer release cycles.
Tight Coupling: The different modules and functions within a monolithic application are often tightly coupled. Changes in one part of the application can have unexpected consequences in other areas, making maintenance and testing more complex.
Difficult Scalability: In a monolithic system, it's often challenging to scale just specific parts of the application. Instead, the entire application must be scaled, which can be inefficient since not all parts may need additional resources.
Easy Start: For smaller or new projects, a monolithic architecture can be easier to develop and manage initially. With everything in one codebase, it’s straightforward to build the first versions of the software.
In summary, a monolith is a traditional software architecture where the entire application is developed as one unified codebase. While this can be useful for small projects, it can lead to maintenance, scalability, and development challenges as the application grows.