bg_image
header

Semaphore

A semaphore is a synchronization mechanism used in computer science and operating system theory to control access to shared resources in a parallel or distributed system. Semaphores are particularly useful for avoiding race conditions and deadlocks.

Types of Semaphores:

  1. Binary Semaphore: Also known as a "mutex" (mutual exclusion), it can only take values 0 and 1. It is used to control access to a resource by exactly one process or thread.
  2. Counting Semaphore: Can take a non-negative integer value and allows access to a specific number of concurrent resources.

How It Works:

  • Semaphore Value: The semaphore has a counter that represents the number of available resources.
    • If the counter is greater than zero, a process can use the resource, and the counter is decremented.
    • If the counter is zero, the process must wait until a resource is released.

Operations:

  • wait (P-operation, Proberen, "to test"):
    • Checks if the counter is greater than zero.
    • If so, it decrements the counter and allows the process to proceed.
    • If not, the process blocks until the counter is greater than zero.
  • signal (V-operation, Verhogen, "to increment"):
    • Increments the counter.
    • If processes are waiting, this operation wakes one of the waiting processes so it can use the resource.

Example:

Suppose we have a resource that can be used by multiple threads. A semaphore can protect this resource:

// PHP example using semaphores (pthreads extension required)

class SemaphoreExample {
    private $semaphore;

    public function __construct($initial) {
        $this->semaphore = sem_get(ftok(__FILE__, 'a'), $initial);
    }

    public function wait() {
        sem_acquire($this->semaphore);
    }

    public function signal() {
        sem_release($this->semaphore);
    }
}

// Main program
$sem = new SemaphoreExample(1); // Binary semaphore

$sem->wait();  // Enter critical section
// Access shared resource
$sem->signal();  // Leave critical section

Applications:

  • Access Control: Controlling access to shared resources like databases, files, or memory areas.
  • Thread Synchronization: Ensuring that certain sections of code are not executed concurrently by multiple threads.
  • Enforcing Order: Coordinating the execution of processes or threads in a specific order.

Semaphores are a powerful tool for making parallel programming safer and more controllable by helping to solve synchronization problems.

 

 


No Preemption

"No Preemption" is a concept in computer science and operating systems that describes the situation where a running process or thread cannot be forcibly taken away from the CPU until it voluntarily finishes its execution or switches to a waiting state. This concept is often used in real-time operating systems and certain scheduling strategies.

Details of No Preemption:

  1. Cooperative Multitasking:

    • In systems with cooperative multitasking, "No Preemption" is the standard behavior. A running process must explicitly set control points where it voluntarily gives up control so that other processes can be executed.
  2. Deterministic Behavior:

    • By avoiding interruptions, software can achieve deterministic behavior, which is particularly important in safety-critical and time-critical applications.
  3. Advantages:

    • Fewer Context Switches: Reduces overhead due to fewer context switches.
    • Predictable Response Times: Processes can have predictable execution times, which is crucial for real-time systems.
  4. Disadvantages:

    • Lower Responsiveness: If a process does not voluntarily give up control, other processes may have to wait a long time for CPU time.
    • Risk of Deadlocks: Poorly programmed processes can block the system by holding onto control for too long.
  5. Applications:

    • Real-Time Operating Systems (RTOS): No Preemption is often desired here to achieve guaranteed response times.
    • Embedded Systems: Systems with limited hardware resources where deterministic responses are required.

In summary, "No Preemption" means that processes or threads are not interrupted before they complete their current task, offering benefits in terms of predictability and lower overhead but also posing challenges regarding responsiveness and system stability.

 


Hold and Wait

"Hold and Wait" is one of the four necessary conditions for a deadlock to occur in a system. This condition describes a situation where a process that already holds at least one resource is also waiting for additional resources that are held by other processes. This leads to a scenario where none of the processes can proceed because each is waiting for resources held by the others.

Explanation and Example

Definition

"Hold and Wait" occurs when:

  1. A process holds one or more resources.
  2. The process is also waiting for one or more additional resources that are held by other processes.

Example

Consider two processes P1P_1 and P2P_2 and two resources R1R_1 and R2R_2:

  • Process P1P_1 holds resource R1R_1 and waits for resource R2R_2, which is held by P2P_2.
  • Process P2P_2 holds resource R2R_2 and waits for resource R1R_1, which is held by P1P_1.

In this scenario, both processes are waiting for resources held by the other process, creating a deadlock.

Strategies to Avoid "Hold and Wait"

To avoid "Hold and Wait" and thus prevent deadlocks, several strategies can be applied:

  1. Resource Request Before Execution:

    • Processes must request and obtain all required resources before they begin execution. If all resources are not available, the process waits and holds no resources.
function requestAllResources($process, $resources) {
    foreach ($resources as $resource) {
        if (!requestResource($resource)) {
            releaseAllResources($process, $resources);
            return false;
        }
    }
    return true;
}

Resource Release Before New Requests:

  • Processes must release all held resources before requesting additional resources.
function requestResourceSafely($process, $resource) {
    releaseAllHeldResources($process);
    return requestResource($resource);
}

Priorities and Timestamps:

  • Resource requests can be prioritized or timestamped to ensure no cyclic dependencies occur.
function requestResourceWithPriority($process, $resource, $priority) {
    if (isHigherPriority($process, $resource, $priority)) {
        return requestResource($resource);
    } else {
        // Wait or abort
        return false;
    }
}
  1. Banker's Algorithm:

    • An algorithmic approach that ensures the system always remains in a safe state by checking if granting a resource would lead to an unsafe state.

Summary

"Hold and Wait" is a condition for deadlocks where processes hold resources while waiting for additional resources. By implementing appropriate resource allocation and management strategies, this condition can be avoided to ensure system stability and efficiency.

 

 

 

 


Random Tech

HHVM - HipHop Virtual Machine


HHVM_logo.svg.png