bg_image
header

Write Around

Write-Around is a caching strategy used in computing systems to optimize the handling of data writes between the main memory and the cache. It focuses on minimizing the potential overhead of updating the cache for certain types of data. The core idea behind write-around is to bypass the cache for write operations, allowing the data to be directly written to the main storage (e.g., disk, database) without being stored in the cache.

How Write-Around Works:

  1. Write Operations: When a write occurs, instead of updating the cache, the new data is written directly to the main storage (e.g., a database or disk).
  2. Cache Bypass: The cache is not updated with the newly written data, reducing cache overhead.
  3. Cache Read-Only: The cache only stores data when it has been read from the main storage, meaning frequently read data will still be cached.

Advantages:

  • Reduced Cache Pollution: Write-around reduces the likelihood of "cache pollution" by avoiding caching data that may not be accessed again soon.
  • Lower Overhead: Write-around eliminates the need to synchronize the cache for every write operation, which can be beneficial for workloads where writes are infrequent or sporadic.

Disadvantages:

  • Potential Cache Misses: Since newly written data is not immediately added to the cache, subsequent read operations on that data will result in a cache miss, causing a slight delay until the data is retrieved from the main storage.
  • Inconsistent Performance: Write-around can lead to inconsistent read performance, especially if the bypassed data is accessed frequently after being written.

Comparison with Other Write Strategies:

  1. Write-Through: Writes data to both cache and main storage simultaneously, ensuring data consistency but with increased write latency.
  2. Write-Back: Writes data only to the cache initially and then writes it back to main storage at a later time, reducing write latency but requiring complex cache management.
  3. Write-Around: Bypasses the cache for write operations, only updating the main storage, and thus aims to reduce cache pollution.

Use Cases for Write-Around:

Write-around is suitable in scenarios where:

  • Writes are infrequent or temporary.
  • Avoiding cache pollution is more beneficial than faster write performance.
  • The data being written is unlikely to be accessed soon.

Overall, write-around is a trade-off between maintaining cache efficiency and reducing cache management overhead for certain write operations.

 


Write Back

Write-Back (also known as Write-Behind) is a caching strategy where changes are first written only to the cache, and the write to the underlying data store (e.g., database) is deferred until a later time. This approach prioritizes write performance by temporarily storing the changes in the cache and batching or asynchronously writing them to the database.

How Write-Back Works

  1. Write Operation: When a record is updated, the change is written only to the cache.
  2. Delayed Write to the Data Store: The update is marked as "dirty" or "pending," and the cache schedules a deferred or batched write operation to update the main data store.
  3. Read Access: Subsequent read operations are served directly from the cache, reflecting the most recent change.
  4. Periodic Syncing: The cache periodically (or when triggered) writes the "dirty" data back to the main data store, either in a batch or asynchronously.

Advantages of Write-Back

  1. High Write Performance: Since write operations are stored temporarily in the cache, the response time for write operations is much faster compared to Write-Through.
  2. Reduced Write Load on the Data Store: Instead of performing each write operation individually, the cache can group multiple writes and apply them in a batch, reducing the number of transactions on the database.
  3. Better Resource Utilization: Write-back can reduce the load on the backend store by minimizing write operations during peak times.

Disadvantages of Write-Back

  1. Potential Data Loss: If the cache server fails before the changes are written back to the main data store, all pending writes are lost, which can result in data inconsistency.
  2. Complexity in Implementation: Managing the deferred writes and ensuring that all changes are eventually propagated to the data store introduces additional complexity and requires careful implementation.
  3. Inconsistency Between Cache and Data Store: Since the main data store is updated asynchronously, there is a window of time where the data in the cache is newer than the data in the database, leading to potential inconsistencies.

Use Cases for Write-Back

  • Write-Heavy Applications: Write-back is particularly useful when the application has frequent write operations and requires low write latency.
  • Scenarios with Low Consistency Requirements: It’s ideal for scenarios where temporary inconsistencies between the cache and data store are acceptable.
  • Batch Processing: Write-back is effective when the system can take advantage of batch processing to write a large number of changes back to the data store at once.

Comparison with Write-Through

  • Write-Back prioritizes write speed and system performance, but at the cost of potential data loss and inconsistency.
  • Write-Through ensures high consistency between cache and data store but has higher write latency.

Summary

Write-Back is a caching strategy that temporarily stores changes in the cache and delays writing them to the underlying data store until a later time, often in batches or asynchronously. This approach provides better write performance but comes with risks related to data loss and inconsistency. It is ideal for applications that need high write throughput and can tolerate some level of data inconsistency between cache and persistent storage.

 


Write Through

Write-Through is a caching strategy that ensures every change (write operation) to the data is synchronously written to both the cache and the underlying data store (e.g., a database). This ensures that the cache is always consistent with the underlying data source, meaning that a read access to the cache always provides the most up-to-date and consistent data.

How Write-Through Works

  1. Write Operation: When an application modifies a record, the change is simultaneously applied to the cache and the permanent data store.
  2. Synchronization: The cache is immediately updated with the new values, and the change is also written to the database.
  3. Read Access: For future read accesses, the latest values are directly available in the cache, without needing to access the database.

Advantages of Write-Through

  1. High Data Consistency: Since every write operation is immediately applied to both the cache and the data store, the data in both systems is always in sync.
  2. Simple Implementation: Write-Through is relatively straightforward to implement, as it doesn’t require complex consistency rules.
  3. Reduced Cache Invalidation Overhead: Since the cache always holds the most up-to-date data, there is no need for separate cache invalidation.

Disadvantages of Write-Through

  1. Higher Latency for Write Operations: Because the data is synchronously written to both the cache and the database, the write operations are slower than with other caching strategies like Write-Back.
  2. Increased Write Load: Each write operation generates load on both the cache and the permanent storage. This can lead to increased system utilization in high-write scenarios.
  3. No Protection Against Failures: If the database is unavailable, the cache cannot handle write operations alone and may cause a failure.

Use Cases for Write-Through

  • Read-Heavy Applications: Write-Through is often used in scenarios where the number of read operations is significantly higher than the number of write operations, as reads can directly access the cache.
  • High Consistency Requirements: Write-Through is ideal when the application requires a very high data consistency between the cache and the data store.
  • Simple Data Models: It’s suitable for applications with relatively simple data structures and fewer dependencies between different records, making it easier to implement.

Summary

Write-Through is a caching strategy that ensures consistency between the cache and data store by performing every change on both storage locations simultaneously. This strategy is particularly useful when consistency and simplicity are more critical than maximizing write speed. However, in scenarios with frequent write operations, the increased latency can become an issue.

 


Closed Source

Closed Source (also known as Proprietary Software) refers to software whose source code is not publicly accessible and can only be viewed, modified, or distributed by the owner or developer. In contrast to Open Source software, where the source code is made publicly available, Closed Source software keeps the source code strictly confidential.

Characteristics of Closed Source Software:

  1. Protected Source Code: The source code is not visible to the public. Only the developer or the company owning the software has access to it, preventing third parties from understanding the internal workings or making changes.

  2. License Restrictions: Closed Source software is usually distributed under restrictive licenses that strictly regulate usage, modification, and redistribution. Users are only allowed to use the software within the terms set by the license.

  3. Access Restrictions: Only authorized developers or teams within the company have permission to modify the code or add new features.

  4. Commercial Use: Closed Source software is often offered as a commercial product. Users typically need to purchase a license or subscribe to use the software. Common examples include Microsoft Office and Adobe Photoshop.

  5. Lower Transparency: Users cannot verify the code for vulnerabilities or hidden features (e.g., backdoors). This can be a concern if security and trust are important factors.

Advantages of Closed Source Software:

  1. Protection of Intellectual Property: Companies protect their source code to prevent others from copying their business logic, algorithms, or special implementations.
  2. Stability and Support: Since the developer has full control over the code, quality assurance is typically more stringent. Additionally, many Closed Source vendors offer robust technical support and regular updates.
  3. Lower Risk of Code Manipulation: Since third parties have no access, there’s a reduced risk of unwanted code changes or the introduction of vulnerabilities from external sources.

Disadvantages of Closed Source Software:

  1. No Customization Options: Users cannot customize the software to their specific needs or fix bugs independently, as they lack access to the source code.
  2. Costs: Closed Source software often involves licensing fees or subscription costs, which can be expensive for businesses.
  3. Dependence on the Vendor: Users rely entirely on the vendor to fix bugs, patch security issues, or add new features.

Examples of Closed Source Software:

Some well-known Closed Source programs and platforms include:

  • Microsoft Windows: The operating system is Closed Source, and its code is owned by Microsoft.
  • Adobe Creative Suite: Photoshop, Illustrator, and other Adobe products are proprietary.
  • Apple iOS and macOS: These operating systems are Closed Source, meaning users can only use the officially provided versions.
  • Proprietary Databases like Oracle Database: These are Closed Source and do not allow access to the internal code.

Difference Between Open Source and Closed Source:

  • Open Source: The source code is freely available, and anyone can view, modify, and distribute it (under specific conditions depending on the license).
  • Closed Source: The source code is not accessible, and usage and distribution are heavily restricted.

Summary:

Closed Source software is proprietary software whose source code is not publicly available. It is typically developed and offered commercially by companies. Users can use the software, but they cannot view or modify the source code. This provides benefits in terms of intellectual property protection and quality assurance but sacrifices flexibility and transparency.

 


Source Code

Source code (also referred to as code or source text) is the human-readable set of instructions written by programmers to define the functionality and behavior of a program. It consists of a sequence of commands and statements written in a specific programming language, such as Java, Python, C++, JavaScript, and many others.

Characteristics of Source Code:

  1. Human-readable: Source code is designed to be readable and understandable by humans. It is often structured with comments and well-organized commands to make the logic easier to follow.

  2. Programming Languages: Source code is written in different programming languages, each with its own syntax and rules. Every language is suited for specific purposes and applications.

  3. Machine-independent: Source code in its raw form is not directly executable. It must be translated into machine-readable code (machine code) so that the computer can understand and execute it. This translation is done by a compiler or an interpreter.

  4. Editing and Maintenance: Developers can modify, extend, and improve source code to add new features or fix bugs. The source code is the foundation for all further development and maintenance activities of a software project.

Example:

A simple example in Python to show what source code looks like:

# A simple Python source code that prints "Hello, World!"
print("Hello, World!")

This code consists of a single command (print) that outputs the text "Hello, World!" on the screen. Although it is just one line, the interpreter (in this case, the Python interpreter) must read, understand, and translate the source code into machine code so that the computer can execute the instruction.

Usage and Importance:

Source code is the core of any software development. It defines the logic, behavior, and functionality of software. Some key aspects of source code are:

  • Program Control: The source code controls the execution of the program and contains instructions for flow control, computations, and data processing.
  • Collaboration: In software projects, multiple developers often work together. Source code is managed in version control systems like Git to facilitate collaboration.
  • Open or Closed: Some software projects release their source code as Open Source, allowing other developers to view, modify, and use it. For proprietary software, the source code is usually kept private (Closed Source).

Summary:

Source code is the fundamental, human-readable text that makes up software programs. It is written by developers to define a program's functionality and must be translated into machine code by a compiler or interpreter before a computer can execute it.

 

 


Modulith

A Modulith is a term from software architecture that combines the concepts of a module and a monolith. It refers to a software module that is relatively independent but still part of a larger monolithic system. Unlike a pure monolith, which is a tightly coupled and often difficult-to-scale system, a modulith organizes the code into more modular and maintainable components with clear separation of concerns.

The core idea of a modulith is to structure the system in a way that allows parts of it to be modular, making it easier to decouple and break down into smaller pieces without having to redesign the entire monolithic system. While it is still deployed as part of a monolith, it has better organization and could be on the path toward a microservices-like architecture.

A modulith is often seen as a transitional step between a traditional monolith architecture and a microservices architecture, aiming for more modularity over time without completely abandoning the complexity of a monolithic system.

 


Monolith

A monolith in software development refers to an architecture where an application is built as a single, large codebase. Unlike microservices, where an application is divided into many independent services, a monolithic application has all its components tightly integrated and runs as a single unit. Here are the key features of a monolithic system:

  1. Single Codebase: A monolith consists of one large, cohesive code repository. All functions of the application, like the user interface, business logic, and data access, are bundled into a single project.

  2. Shared Database: In a monolith, all components access a central database. This means that all parts of the application are closely connected, and changes to the database structure can impact the entire system.

  3. Centralized Deployment: A monolith is deployed as one large software package. If a small change is made in one part of the system, the entire application needs to be recompiled, tested, and redeployed. This can lead to longer release cycles.

  4. Tight Coupling: The different modules and functions within a monolithic application are often tightly coupled. Changes in one part of the application can have unexpected consequences in other areas, making maintenance and testing more complex.

  5. Difficult Scalability: In a monolithic system, it's often challenging to scale just specific parts of the application. Instead, the entire application must be scaled, which can be inefficient since not all parts may need additional resources.

  6. Easy Start: For smaller or new projects, a monolithic architecture can be easier to develop and manage initially. With everything in one codebase, it’s straightforward to build the first versions of the software.

Advantages of a Monolith:

  • Simplified Development Process: Early in development, it can be easier to have everything in one place, where a developer can oversee the entire codebase.
  • Less Complex Infrastructure: Monoliths typically don’t require the complex communication layers that microservices do, making them simpler to manage in smaller cases.

Disadvantages of a Monolith:

  • Maintenance Issues: As the application grows, the code becomes harder to understand, test, and modify.
  • Long Release Cycles: Small changes in one part of the system often require testing and redeploying the entire application.
  • Scalability Challenges: It's hard to scale specific areas of the application; instead, the entire app needs more resources, even if only certain parts are under heavy load.

In summary, a monolith is a traditional software architecture where the entire application is developed as one unified codebase. While this can be useful for small projects, it can lead to maintenance, scalability, and development challenges as the application grows.

 


Client Server Architecture

The client-server architecture is a common concept in computing that describes the structure of networks and applications. It separates tasks between client and server components, which can run on different machines or devices. Here are the basic features:

  1. Client: The client is an end device or application that sends requests to the server. These can be computers, smartphones, or specific software applications. Clients are typically responsible for user interaction and send requests to obtain information or services from the server.

  2. Server: The server is a more powerful computer or software application that handles client requests and provides corresponding responses or services. The server processes the logic and data and sends the results back to the clients.

  3. Communication: Communication between clients and servers generally happens over a network, often using protocols such as HTTP (for web applications) or TCP/IP. Clients send requests, and servers respond with the requested data or services.

  4. Centralized Resources: Servers provide centralized resources, such as databases or applications, that can be used by multiple clients. This enables efficient resource usage and simplifies maintenance and updates.

  5. Scalability: The client-server architecture allows systems to scale easily. Additional servers can be added to distribute the load, or more clients can be supported to serve more users.

  6. Security: By separating the client and server, security measures can be implemented centrally, making it easier to protect data and services.

Overall, the client-server architecture offers a flexible and efficient way to provide applications and services in distributed systems.

 


Gearman

Gearman is an open-source job queue manager and distributed task handling system. It is used to distribute tasks (jobs) and execute them in parallel processes. Gearman allows large or complex tasks to be broken down into smaller sub-tasks, which can then be processed in parallel across different servers or processes.

Basic Functionality:

Gearman operates on a simple client-server-worker model:

  1. Client: A client submits a task to the Gearman server, such as uploading and processing a large file or running a script.

  2. Server: The Gearman server receives the task and splits it into individual jobs. It then distributes these jobs to available workers.

  3. Worker: A worker is a process or server that listens for jobs from the Gearman server and processes tasks that it can handle. Once the worker completes a task, it sends the result back to the server, which forwards it to the client.

Advantages and Applications of Gearman:

  • Distributed Computing: Gearman allows tasks to be distributed across multiple servers, reducing processing time. This is especially useful for large, data-intensive tasks like image processing, data analysis, or web scraping.

  • Asynchronous Processing: Gearman supports background job execution, meaning a client does not need to wait for a job to complete. The results can be retrieved later.

  • Load Balancing: By using multiple workers, Gearman can distribute the load of tasks across several machines, offering better scalability and fault tolerance.

  • Cross-platform and Multi-language: Gearman supports various programming languages like C, Perl, Python, PHP, and more, so developers can work in their preferred language.

Typical Use Cases:

  • Batch Processing: When large datasets need to be processed, Gearman can split the task across multiple workers for parallel processing.

  • Microservices: Gearman can be used to coordinate different services and distribute tasks across multiple servers.

  • Background Jobs: Websites can offload tasks like report generation or email sending to the background, allowing them to continue serving user requests.

Overall, Gearman is a useful tool for distributing tasks and improving the efficiency of job processing across multiple systems.

 


Captain Hook

CaptainHook is a PHP-based Git hook manager that helps developers automate tasks related to Git repositories. It allows you to easily configure and manage Git hooks, which are scripts that run automatically at certain points during the Git workflow (e.g., before committing or pushing code). This is particularly useful for enforcing coding standards, running tests, validating commit messages, or preventing bad code from being committed.

CaptainHook can be integrated into projects via Composer, and it offers flexibility for customizing hooks and plugins, making it easy to enforce project-specific rules. It supports multiple PHP versions, with the latest requiring PHP 8.0​.

 

 


Random Tech

WooCommerce


WooCommerce_logo.svg.png