Zero Trust is a security concept based on the principle:
"Never trust, always verify."
Unlike traditional security models that automatically trust internal network traffic, Zero Trust assumes that every user, device, and application must be authenticated, authorized, and continuously monitored — regardless of whether they are inside or outside the network perimeter.
Verification over Trust
No one is trusted by default — every user, device, and service must prove who they are.
Least Privilege Access
Users and services only get the minimum access they truly need — nothing more.
Continuous Validation
Trust is not permanent — it’s reevaluated continuously (based on behavior, location, device status, etc.).
Micro-Segmentation
The network is divided into small, isolated zones to prevent lateral movement if an attacker breaks in.
Centralized Visibility & Logging
Every access attempt is logged and monitored — critical for audits, compliance, and detecting threats.
Multi-Factor Authentication (MFA)
Identity & Access Management (IAM)
Device Posture Checks (e.g., antivirus, patch status)
ZTNA (Zero Trust Network Access) as a VPN replacement
Micro-segmentation via cloud firewalls or SDN
Security Monitoring Tools (e.g., SIEM, UEBA)
Remote Work: Employees work from anywhere — not just inside a "trusted" office LAN.
Cloud & SaaS adoption: Data lives outside your data center.
Evolving Threat Landscape: Ransomware, insider threats, social engineering.
Without Zero Trust:
A user logs in via VPN and has full network access, just because they're "inside".
With Zero Trust:
The user must verify identity, device health is checked, and access is limited to only necessary apps — no blind trust.
Zero Trust is not a single product — it's a security strategy. Its goal is to reduce risk by enforcing continuous verification and minimizing access. When done right, it can drastically lower the chances of data breaches, insider threats, and lateral movement within a network.
Deployer is an open-source deployment tool for PHP projects — specifically designed to automate, standardize, and securely deploy applications like Laravel, Symfony, Magento, WordPress, or any custom PHP apps.
It’s a CLI tool, written in PHP.
You define your deployment process in a deploy.php
configuration file with clearly defined tasks.
It supports zero-downtime deployment using symbolic links (symlinks).
It supports multi-environment deployments (e.g., staging, production).
Install Deployer via Composer:
composer require deployer/deployer --dev
Generate a config template:
vendor/bin/dep init
Configure deploy.php
, e.g., for Laravel:
host('my-server.com')
->set('deploy_path', '/var/www/myproject')
->set('branch', 'main');
task('deploy', [
'deploy:prepare',
'deploy:vendors',
'artisan:migrate',
'deploy:publish',
]);
Deploy your app:
vendor/bin/dep deploy production
Deployer:
Connects to the server via SSH
Clones your Git repo into a new release directory
Installs Composer dependencies
Runs custom tasks (e.g., php artisan migrate
)
Updates the symlink to point to the new release (current
)
Removes old releases if configured
Benefit | Description |
---|---|
๐ Fast & scriptable | Fully CLI-driven |
๐ Rollback support | Instantly roll back to previous working release |
โ๏ธ Highly customizable | Define your own tasks, hooks, conditions |
๐งฉ Presets available | Laravel, Symfony, WordPress, etc. |
๐ Secure by default | Uses SSH — no FTP needed |
Laravel Octane is an official package for the Laravel framework that dramatically boosts application performance by running Laravel on high-performance application servers like Swoole or RoadRunner.
Instead of reloading the Laravel framework on every HTTP request (as with traditional PHP-FPM setups), Octane keeps the application in memory, avoiding repeated bootstrapping. This makes your Laravel app much faster.
Laravel Octane uses persistent worker servers (e.g., Swoole or RoadRunner), which:
Bootstrap the Laravel application once,
Then handle incoming requests repeatedly without restarting the framework.
Benefit | Description |
---|---|
โก Faster performance | Up to 10x faster than traditional PHP-FPM setups |
๐ Persistent workers | No full reload on every request |
๐ WebSockets & real-time support | Built-in support via Swoole/RoadRunner |
๐งต Concurrency | Parallel task handling possible |
๐ง Built-in tools | Task workers, route reload watching, background tasks, etc. |
RoadRunner is a high-performance PHP application server developed by Spiral Scout. It serves as a replacement for traditional PHP-FPM (FastCGI Process Manager) and offers a major performance boost by keeping your PHP application running persistently — especially useful with frameworks like Laravel or Symfony.
PHP scripts are not reloaded on every request. Instead, they run continuously in persistent worker processes (similar to Node.js or Swoole).
This eliminates the need to re-bootstrap the framework on every request — resulting in significantly faster response times than with PHP-FPM.
RoadRunner is written in the programming language Go, which provides high concurrency, easy deployment, and great stability.
Native HTTP server (with HTTPS, Gzip, CORS, etc.)
PSR-7 and PSR-15 middleware support
Supports:
Hot reload support with a watch plugin
RoadRunner starts PHP worker processes.
These workers load your full framework bootstrap once.
Incoming HTTP or gRPC requests are forwarded to the PHP workers.
The response is returned through the Go layer — fast and concurrent.
Laravel + RoadRunner (instead of Laravel + PHP-FPM)
High-traffic applications and APIs
Microservices
Real-time apps (e.g., using WebSockets)
Low-latency, serverless-like services
Feature | PHP-FPM | RoadRunner |
---|---|---|
Bootstraps per request | Yes | No (persistent workers) |
Speed | Good | Excellent |
WebSocket support | No | Yes |
gRPC support | No | Yes |
Language | C | Go |
GitHub Actions is a feature of GitHub that lets you create automated workflows for your software projects—right inside your GitHub repository.
You can build CI/CD pipelines (Continuous Integration / Continuous Deployment), such as:
โ Automatically test code (e.g. with PHPUnit, Jest, Pytest)
๐ ๏ธ Build your app on every push or pull request
๐ Automatically deploy (e.g. to a server, cloud platform, or DockerHub)
๐ฆ Create releases (e.g. zip packages or version tags)
๐ Run scheduled tasks (cronjobs)
GitHub Actions uses workflows, defined in a YAML file inside your repository:
Typically stored as .github/workflows/ci.yml
You define events (like push
, pull_request
) and jobs (like build
, test
)
Each job consists of steps, which are shell commands or prebuilt actions
name: CI
on: [push]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: '20'
- run: npm install
- run: npm test
An Action is a single reusable step in a workflow. You can use:
Prebuilt actions (e.g. actions/checkout
, setup-node
, upload-artifact
)
Custom actions (e.g. shell scripts or Docker-based logic)
You can explore reusable actions in the GitHub Marketplace.
Saves time by automating repetitive tasks
Improves code quality through automated testing
Enables consistent, repeatable deployments
Integrated directly in GitHub—no need for external CI tools like Jenkins or Travis CI
Storyblok is a user-friendly, headless Content Management System (CMS) that helps developers and marketing teams create, manage, and publish content quickly and efficiently. It offers a visual editing interface for real-time content design and is flexible with various frameworks and platforms. Its API-first architecture allows content to be delivered to any digital platform, making it ideal for modern web and app development.
Shopware is a modular e-commerce system from Germany that allows you to create and manage online stores. It’s designed for both small retailers and large enterprises, known for its flexibility, scalability, and modern technology.
Developer: Shopware AG (founded in 2000 in Germany)
Technology: PHP, Symfony framework, API-first approach
Current Version: Shopware 6 (since 2019)
Open Source: Yes, with paid extensions available
Headless Ready: Yes, supports headless commerce via APIs
Product Management: Variants, tier pricing, media, SEO tools
Sales Channels: Web shop, POS, social media, marketplaces
Content Management: Built-in CMS ("Shopping Experiences")
Payments & Shipping: Many integrations (e.g. PayPal, Klarna)
Multilingual & Multi-Currency Support
B2B & B2C capabilities
App System & API for custom extensions
Startups (free Community Edition available)
SMEs and mid-sized businesses
Enterprise clients with complex needs
Very popular in the DACH region (Germany, Austria, Switzerland)
Made in Germany → GDPR-compliant
Highly customizable
Active ecosystem & community
Scalable for growing businesses
An Entity Manager is a core component of ORM (Object-Relational Mapping) frameworks, especially in Java (JPA – Java Persistence API), but also in other languages like PHP (Doctrine ORM).
Persisting:
Finding/Loading:
Retrieves an object by its ID or other criteria.
Example: $entityManager->find(User::class, 1);
Updating:
Tracks changes to objects and writes them to the database (usually via flush()
).
Removing:
Deletes an object from the database.
Example: $entityManager->remove($user);
Managing Transactions:
Begins, commits, or rolls back transactions.
Handling Queries:
Executes custom queries, often using DQL (Doctrine Query Language) or JPQL.
The Entity Manager tracks the state of entities:
managed (being tracked),
detached (no longer tracked),
removed (marked for deletion),
new (not yet persisted).
$user = new User();
$user->setName('Max Mustermann');
$entityManager->persist($user); // Mark for saving
$entityManager->flush(); // Write to DB
The Entity Manager is the central component for working with database objects — creating, reading, updating, deleting. It abstracts SQL and provides a clean, object-oriented way to interact with your data layer.
Doctrine DBAL (Database Abstraction Layer) is a PHP library that provides an abstraction layer for database access. It is part of the Doctrine project (a popular ORM for PHP), but it can be used independently of the ORM.
Doctrine DBAL offers a unified API to interact with different databases (such as MySQL, PostgreSQL, SQLite, etc.) without writing raw SQL specific to each database system.
Easily configure and manage connections to various database systems.
Supports connection pooling, transactions, and more.
Build SQL queries programmatically using an object-oriented API:
$qb = $conn->createQueryBuilder();
$qb->select('u.id', 'u.name')
->from('users', 'u')
->where('u.age > :age')
->setParameter('age', 18);
$stmt = $qb->executeQuery();
Database Independence
The same code works with different database systems (e.g., MySQL, PostgreSQL) with minimal changes.
Schema Management
Tools to create, update, and compare database schemas.
Useful for migrations and automation.
Data Type Conversion
Automatically converts data between PHP types and database-native types.
use Doctrine\DBAL\DriverManager;
$conn = DriverManager::getConnection([
'dbname' => 'test',
'user' => 'root',
'password' => '',
'host' => 'localhost',
'driver' => 'pdo_mysql',
]);
$result = $conn->fetchAllAssociative('SELECT * FROM users');
You might choose DBAL without ORM if:
You want full control over your SQL.
Your project doesn't need complex object-relational mapping.
You're working with a legacy database or custom queries.
Doctrine DBAL is a powerful tool for clean, portable, and secure database access in PHP. It sits between raw PDO usage and a full-featured ORM like Doctrine ORM, making it ideal for developers who want abstraction and flexibility without the overhead of ORM logic.
A Join Point is a concept from Aspect-Oriented Programming (AOP).
A Join Point is a specific point during the execution of program code where additional behavior (called an aspect) can be inserted.
Method calls
Method executions
Field access (read/write)
Exception handling
In AOP, cross-cutting concerns (like logging, security, or transaction management) are separated from the main business logic. These concerns are applied at defined points in the program flow — the Join Points.
Pointcut: A way to specify which Join Points should be affected (e.g., "all methods starting with save
").
Advice: The actual code that runs at a Join Point (e.g., "log this method call").
Aspect: A combination of Pointcut(s) and Advice(s) — the full module that implements a cross-cutting concern.
@Before("execution(* com.example.service.*.*(..))")
public void logBeforeMethod(JoinPoint joinPoint) {
System.out.println("Calling method: " + joinPoint.getSignature().getName());
}
→ This logs a message before every method call in a specific package. The joinPoint.getSignature()
call provides details about the actual Join Point.