Write-Around is a caching strategy used in computing systems to optimize the handling of data writes between the main memory and the cache. It focuses on minimizing the potential overhead of updating the cache for certain types of data. The core idea behind write-around is to bypass the cache for write operations, allowing the data to be directly written to the main storage (e.g., disk, database) without being stored in the cache.
Write-around is suitable in scenarios where:
Overall, write-around is a trade-off between maintaining cache efficiency and reducing cache management overhead for certain write operations.
Write-Back (also known as Write-Behind) is a caching strategy where changes are first written only to the cache, and the write to the underlying data store (e.g., database) is deferred until a later time. This approach prioritizes write performance by temporarily storing the changes in the cache and batching or asynchronously writing them to the database.
Write-Back is a caching strategy that temporarily stores changes in the cache and delays writing them to the underlying data store until a later time, often in batches or asynchronously. This approach provides better write performance but comes with risks related to data loss and inconsistency. It is ideal for applications that need high write throughput and can tolerate some level of data inconsistency between cache and persistent storage.
Write-Through is a caching strategy that ensures every change (write operation) to the data is synchronously written to both the cache and the underlying data store (e.g., a database). This ensures that the cache is always consistent with the underlying data source, meaning that a read access to the cache always provides the most up-to-date and consistent data.
Write-Through is a caching strategy that ensures consistency between the cache and data store by performing every change on both storage locations simultaneously. This strategy is particularly useful when consistency and simplicity are more critical than maximizing write speed. However, in scenarios with frequent write operations, the increased latency can become an issue.
Closed Source (also known as Proprietary Software) refers to software whose source code is not publicly accessible and can only be viewed, modified, or distributed by the owner or developer. In contrast to Open Source software, where the source code is made publicly available, Closed Source software keeps the source code strictly confidential.
Protected Source Code: The source code is not visible to the public. Only the developer or the company owning the software has access to it, preventing third parties from understanding the internal workings or making changes.
License Restrictions: Closed Source software is usually distributed under restrictive licenses that strictly regulate usage, modification, and redistribution. Users are only allowed to use the software within the terms set by the license.
Access Restrictions: Only authorized developers or teams within the company have permission to modify the code or add new features.
Commercial Use: Closed Source software is often offered as a commercial product. Users typically need to purchase a license or subscribe to use the software. Common examples include Microsoft Office and Adobe Photoshop.
Lower Transparency: Users cannot verify the code for vulnerabilities or hidden features (e.g., backdoors). This can be a concern if security and trust are important factors.
Some well-known Closed Source programs and platforms include:
Closed Source software is proprietary software whose source code is not publicly available. It is typically developed and offered commercially by companies. Users can use the software, but they cannot view or modify the source code. This provides benefits in terms of intellectual property protection and quality assurance but sacrifices flexibility and transparency.
Hype Driven Development (HDD) is an ironic term in software development that refers to the tendency to adopt technologies or practices because they are currently trendy, rather than selecting them based on their actual suitability for the project. Developers or companies practicing HDD often embrace new frameworks, tools, or programming languages because they are gaining a lot of attention, without sufficiently analyzing whether these solutions are truly the best fit for their specific needs.
Typical characteristics of HDD include:
Overall, Hype Driven Development often leads to overcomplicated architectures, technical debt, and a significant investment of time in learning constantly changing technologies.
Batch Processing is a method of data processing where a group of tasks or data is collected as a "batch" and processed together, rather than handling them individually in real time. This approach is commonly used to process large amounts of data efficiently without the need for human intervention while the process is running.
Here are some key features of batch processing:
Scheduled: Tasks are processed at specific times or after reaching a certain volume of data.
Automated: The process typically runs automatically, without the need for immediate human input.
Efficient: Since many tasks are processed simultaneously, batch processing can save time and resources.
Examples:
Batch processing is especially useful for repetitive tasks that do not need to be handled immediately but can be processed at regular intervals.
Contract Driven Development (CDD) is a software development approach that focuses on defining and using contracts between different components or services. These contracts clearly specify how various software parts should interact with each other. CDD is commonly used in microservices architectures or API development to ensure that communication between independent modules is accurate and consistent.
Contracts as a Single Source of Truth:
Separation of Implementation and Contract:
Contract-Driven Testing:
Consumer-Driven Contract
test can be used to ensure that the data and formats expected by the consumer are provided by the provider.Management Overhead:
Versioning and Backward Compatibility:
Over-Documentation:
Contract Driven Development is especially suitable for projects with many independent components where clear and stable interfaces are essential. It helps prevent misunderstandings and ensures that the communication between services remains robust through automated testing. However, the added complexity of managing contracts needs to be considered.
Domain-Driven Design (DDD) is an approach to software development that focuses on modeling the underlying business domain. The goal is to create software solutions that closely align with the requirements and understanding of the real-world business area. DDD was popularized by Eric Evans in his book "Domain-Driven Design: Tackling Complexity in the Heart of Software."
The core idea behind DDD is that the structure and behavior of the software should reflect the underlying business domain to ensure effective collaboration between developers, domain experts, and other stakeholders.
Domain: The business domain is the central focus of DDD, referring to the area of business or industry that the software is designed to represent (e.g., e-commerce, finance).
Ubiquitous Language: A shared language used by developers and domain experts to describe the domain clearly and accurately. This helps avoid misunderstandings.
Entities and Value Objects:
Aggregates: A cluster of related objects (entities and value objects) that are treated as a single unit. Aggregates always have a Root Entity, which serves as the main entry point.
Repositories: Handle storing and retrieving aggregates. They provide an abstraction for accessing and saving objects.
Services: Methods or operations that implement domain logic but don't belong directly to any specific entity.
Bounded Context: A clearly defined area within the domain where specific terms and concepts are used in a precise way. Different bounded contexts may have different models for the same terms.
Domain Events: Events that occur within the domain and indicate that something relevant has happened, potentially leading to a change in state.
Domain-Driven Design is especially helpful in complex projects where business logic is central and frequently evolving.
Rolling Deployment is a gradual software release method where the new version of an application is deployed incrementally, server by server or node by node. The goal is to ensure continuous availability by updating only part of the infrastructure at a time while the rest continues running the old version.
A Rolling Deployment is ideal for large, scalable systems that require continuous availability and reduces risk through incremental updates.
A Canary Release is a software deployment technique where a new version of an application is rolled out gradually to a small subset of users. The goal is to detect potential issues early before releasing the new version to all users.
A Canary Release provides a safe, gradual way to introduce new software versions without affecting all users immediately.