bg_image
header

Write Around

Write-Around is a caching strategy used in computing systems to optimize the handling of data writes between the main memory and the cache. It focuses on minimizing the potential overhead of updating the cache for certain types of data. The core idea behind write-around is to bypass the cache for write operations, allowing the data to be directly written to the main storage (e.g., disk, database) without being stored in the cache.

How Write-Around Works:

  1. Write Operations: When a write occurs, instead of updating the cache, the new data is written directly to the main storage (e.g., a database or disk).
  2. Cache Bypass: The cache is not updated with the newly written data, reducing cache overhead.
  3. Cache Read-Only: The cache only stores data when it has been read from the main storage, meaning frequently read data will still be cached.

Advantages:

  • Reduced Cache Pollution: Write-around reduces the likelihood of "cache pollution" by avoiding caching data that may not be accessed again soon.
  • Lower Overhead: Write-around eliminates the need to synchronize the cache for every write operation, which can be beneficial for workloads where writes are infrequent or sporadic.

Disadvantages:

  • Potential Cache Misses: Since newly written data is not immediately added to the cache, subsequent read operations on that data will result in a cache miss, causing a slight delay until the data is retrieved from the main storage.
  • Inconsistent Performance: Write-around can lead to inconsistent read performance, especially if the bypassed data is accessed frequently after being written.

Comparison with Other Write Strategies:

  1. Write-Through: Writes data to both cache and main storage simultaneously, ensuring data consistency but with increased write latency.
  2. Write-Back: Writes data only to the cache initially and then writes it back to main storage at a later time, reducing write latency but requiring complex cache management.
  3. Write-Around: Bypasses the cache for write operations, only updating the main storage, and thus aims to reduce cache pollution.

Use Cases for Write-Around:

Write-around is suitable in scenarios where:

  • Writes are infrequent or temporary.
  • Avoiding cache pollution is more beneficial than faster write performance.
  • The data being written is unlikely to be accessed soon.

Overall, write-around is a trade-off between maintaining cache efficiency and reducing cache management overhead for certain write operations.

 


Write Back

Write-Back (also known as Write-Behind) is a caching strategy where changes are first written only to the cache, and the write to the underlying data store (e.g., database) is deferred until a later time. This approach prioritizes write performance by temporarily storing the changes in the cache and batching or asynchronously writing them to the database.

How Write-Back Works

  1. Write Operation: When a record is updated, the change is written only to the cache.
  2. Delayed Write to the Data Store: The update is marked as "dirty" or "pending," and the cache schedules a deferred or batched write operation to update the main data store.
  3. Read Access: Subsequent read operations are served directly from the cache, reflecting the most recent change.
  4. Periodic Syncing: The cache periodically (or when triggered) writes the "dirty" data back to the main data store, either in a batch or asynchronously.

Advantages of Write-Back

  1. High Write Performance: Since write operations are stored temporarily in the cache, the response time for write operations is much faster compared to Write-Through.
  2. Reduced Write Load on the Data Store: Instead of performing each write operation individually, the cache can group multiple writes and apply them in a batch, reducing the number of transactions on the database.
  3. Better Resource Utilization: Write-back can reduce the load on the backend store by minimizing write operations during peak times.

Disadvantages of Write-Back

  1. Potential Data Loss: If the cache server fails before the changes are written back to the main data store, all pending writes are lost, which can result in data inconsistency.
  2. Complexity in Implementation: Managing the deferred writes and ensuring that all changes are eventually propagated to the data store introduces additional complexity and requires careful implementation.
  3. Inconsistency Between Cache and Data Store: Since the main data store is updated asynchronously, there is a window of time where the data in the cache is newer than the data in the database, leading to potential inconsistencies.

Use Cases for Write-Back

  • Write-Heavy Applications: Write-back is particularly useful when the application has frequent write operations and requires low write latency.
  • Scenarios with Low Consistency Requirements: It’s ideal for scenarios where temporary inconsistencies between the cache and data store are acceptable.
  • Batch Processing: Write-back is effective when the system can take advantage of batch processing to write a large number of changes back to the data store at once.

Comparison with Write-Through

  • Write-Back prioritizes write speed and system performance, but at the cost of potential data loss and inconsistency.
  • Write-Through ensures high consistency between cache and data store but has higher write latency.

Summary

Write-Back is a caching strategy that temporarily stores changes in the cache and delays writing them to the underlying data store until a later time, often in batches or asynchronously. This approach provides better write performance but comes with risks related to data loss and inconsistency. It is ideal for applications that need high write throughput and can tolerate some level of data inconsistency between cache and persistent storage.

 


Random Tech

HHVM - HipHop Virtual Machine


HHVM_logo.svg.png