bg_image
header

Database triggers

🔧 What are Database Triggers?

Database triggers are special automated procedures in a database that are automatically executed when certain events occur on a table or view.


🧠 Example:

Imagine you have a table called Orders, and you want to automatically log every time an order is deleted.
You can create a DELETE trigger on the Orders table that inserts a message into a Log table whenever a row is deleted.


🔄 Types of Triggers:

Type Description
BEFORE Executes before the triggering action
AFTER Executes after the triggering action
INSTEAD OF (for views) replaces the triggering action
CREATE TRIGGER log_delete
AFTER DELETE ON Orders
FOR EACH ROW
BEGIN
  INSERT INTO Log (action, timestamp)
  VALUES ('Order deleted', NOW());
END;

✅ Common Uses of Triggers:

  • Data validation

  • Audit logging

  • Enforcing business rules

  • Extending referential integrity


⚠️ Disadvantages:

  • Can be hard to debug

  • Might trigger other actions unexpectedly

  • Can impact performance if overly complex


GitHub Actions

🛠️ What is GitHub Actions?

GitHub Actions is a feature of GitHub that lets you create automated workflows for your software projects—right inside your GitHub repository.


📌 What can you do with GitHub Actions?

You can build CI/CD pipelines (Continuous Integration / Continuous Deployment), such as:

  • ✅ Automatically test code (e.g. with PHPUnit, Jest, Pytest)

  • 🛠️ Build your app on every push or pull request

  • 🚀 Automatically deploy (e.g. to a server, cloud platform, or DockerHub)

  • 📦 Create releases (e.g. zip packages or version tags)

  • 🔄 Run scheduled tasks (cronjobs)


🧱 How does it work?

GitHub Actions uses workflows, defined in a YAML file inside your repository:

  • Typically stored as .github/workflows/ci.yml

  • You define events (like push, pull_request) and jobs (like build, test)

  • Each job consists of steps, which are shell commands or prebuilt actions

Example: Simple CI Workflow for Node.js

name: CI

on: [push]

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      - uses: actions/setup-node@v3
        with:
          node-version: '20'
      - run: npm install
      - run: npm test

🧩 What are "Actions"?

An Action is a single reusable step in a workflow. You can use:

  • Prebuilt actions (e.g. actions/checkout, setup-node, upload-artifact)

  • Custom actions (e.g. shell scripts or Docker-based logic)

You can explore reusable actions in the GitHub Marketplace.


💡 Why use GitHub Actions?

  • Saves time by automating repetitive tasks

  • Improves code quality through automated testing

  • Enables consistent, repeatable deployments

  • Integrated directly in GitHub—no need for external CI tools like Jenkins or Travis CI


Docker Compose

Docker Compose is a tool that lets you define and run multi-container Docker applications using a single configuration file. Instead of starting each container manually via the Docker CLI, you can describe all your services (like a web app, database, cache, etc.) in a docker-compose.yml file and run everything with a single command.


In short:

Docker Compose = Project config + Multiple containers + One command to run it all


Example: docker-compose.yml

version: '3.9'
services:
  web:
    build: .
    ports:
      - "5000:5000"
    volumes:
      - .:/code
  redis:
    image: "redis:alpine"

This file:

  • Builds and runs a local web app container

  • Starts a Redis container from the official image

  • Automatically networks the two containers


Common Commands:

docker-compose up        # Start all services in the foreground
docker-compose up -d     # Start in detached (background) mode
docker-compose down      # Stop and remove containers, networks, etc.

Benefits of Docker Compose:

✅ Easy setup for multi-service applications
✅ Version-controlled config (great for Git)
✅ Reproducible development environments
✅ Simple startup/shutdown of entire stacks


Typical Use Cases:

  • Local development with multiple services (e.g., web app + DB)

  • Integration testing with full stack

  • Simple deployment workflows (e.g., via CI/CD)


Contentful

Contentful is a headless content management system (headless CMS). It allows businesses to manage content centrally and deliver it flexibly to various channels—such as websites, apps, or digital displays—via APIs.


What does “Headless” mean?

Traditional CMS platforms (like WordPress) handle both content management and content presentation (e.g., rendering on a website). A headless CMS separates the content backend from the presentation frontend—hence the term “headless,” as the “head” (the frontend) is removed.


Key features of Contentful:

  • API-first: Content is accessed via REST or GraphQL APIs.

  • Flexible content modeling: You can define your own content types (e.g., blog posts, products, testimonials) with customizable fields.

  • Multi-language support: Well-suited for managing multilingual content.

  • Cloud-based: No server maintenance needed.

  • Integration-friendly: Works well with tools like React, Vue, Next.js, Shopify, SAP, etc.


Who is Contentful for?

  • Companies with multiple delivery channels (websites, apps, smartwatches, etc.)

  • Teams that want to develop frontend and backend separately

  • Large brands with global content needs

  • Developer teams seeking a scalable and flexible CMS

 


Headless CMS

A Headless CMS (Content Management System) is a system where the backend (content management) is completely separated from the frontend (content presentation).

In detail:

Traditional CMS (e.g., WordPress):

  • Backend and frontend are tightly coupled.

  • You create content in the system and it's rendered directly using built-in themes and templates with HTML.

  • Pros: All-in-one solution, quick to get started.

  • Cons: Limited flexibility, harder to deliver content across multiple platforms (e.g., website + mobile app).

Headless CMS:

  • Backend only.

  • Content is accessed via an API (usually REST or GraphQL).

  • The frontend (e.g., a React site, native app, or digital signage) fetches the content dynamically.

  • Pros: Very flexible, ideal for multi-channel content delivery.

  • Cons: Frontend must be built separately (requires more development effort).

Common use cases:

  • Websites built with modern JavaScript frameworks (like React, Next.js, Vue)

  • Mobile apps that use the same content as the website

  • Omnichannel strategies: website, app, smart devices, etc.

Examples of Headless CMS platforms:

  • Contentful

  • Strapi

  • Sanity

  • Directus

  • Prismic

  • Storyblok (a hybrid with visual editing capabilities)

 


Storyblok

Storyblok is a user-friendly, headless Content Management System (CMS) that helps developers and marketing teams create, manage, and publish content quickly and efficiently. It offers a visual editing interface for real-time content design and is flexible with various frameworks and platforms. Its API-first architecture allows content to be delivered to any digital platform, making it ideal for modern web and app development.


Shopware

Shopware is a modular e-commerce system from Germany that allows you to create and manage online stores. It’s designed for both small retailers and large enterprises, known for its flexibility, scalability, and modern technology.


🔹 General Information:

  • Developer: Shopware AG (founded in 2000 in Germany)

  • Technology: PHP, Symfony framework, API-first approach

  • Current Version: Shopware 6 (since 2019)

  • Open Source: Yes, with paid extensions available

  • Headless Ready: Yes, supports headless commerce via APIs


🔹 Key Features:

  • Product Management: Variants, tier pricing, media, SEO tools

  • Sales Channels: Web shop, POS, social media, marketplaces

  • Content Management: Built-in CMS ("Shopping Experiences")

  • Payments & Shipping: Many integrations (e.g. PayPal, Klarna)

  • Multilingual & Multi-Currency Support

  • B2B & B2C capabilities

  • App System & API for custom extensions


🔹 Who is Shopware for?

  • Startups (free Community Edition available)

  • SMEs and mid-sized businesses

  • Enterprise clients with complex needs

  • Very popular in the DACH region (Germany, Austria, Switzerland)


🔹 Advantages:

  • Made in Germany → GDPR-compliant

  • Highly customizable

  • Active ecosystem & community

  • Scalable for growing businesses

 


Prepared Statements

A Prepared Statement is a programming technique, especially used when working with databases, to make SQL queries more secure and efficient.

1. How does a Prepared Statement work?

It consists of two steps:

  1. Prepare the SQL query with placeholders
    Example in SQL:

SELECT * FROM users WHERE username = ? AND password = ?

 

 

  • (Some languages use :username or other types of placeholders.)

  • Bind parameters and execute
    The real values are bound later, for example:

 

$stmt->bind_param("ss", $username, $password);
$stmt->execute();

2. Advantages

Protection against SQL injection:
User input is treated separately and safely, not directly inserted into the SQL string.

Faster with repeated use:
The SQL query is parsed once by the database server and can be executed multiple times efficiently (e.g., in loops).


3. Example in PHP using MySQLi

$conn = new mysqli("localhost", "user", "pass", "database");
$stmt = $conn->prepare("SELECT * FROM users WHERE email = ?");
$stmt->bind_param("s", $email); // "s" stands for string
$email = "example@example.com";
$stmt->execute();
$result = $stmt->get_result();

In short:

A Prepared Statement separates SQL logic from user input, making it a secure (SQL Injection) and recommended practice when dealing with databases.


Outer Join

An Outer Join is a type of database join (commonly used in SQL) that returns records from one or both tables even if there’s no matching record in the other table.

Types of Outer Joins:

  1. LEFT OUTER JOIN (or simply: LEFT JOIN):
    → Returns all records from the left table, and the matching ones from the right table.
    → If there’s no match, the result is filled with NULL values from the right table.

  2. RIGHT OUTER JOIN (or: RIGHT JOIN):
    → Returns all records from the right table, and the matching ones from the left table.
    → If there’s no match, NULL is used for the left side.

  3. FULL OUTER JOIN:
    → Returns all records from both tables, with NULL where no match exists on either side.


Example:

Suppose you have two tables:

  • Customers

    CustomerID Name
    1 Anna
    2 Bernd
    3 Clara
  • Orders

    OrderID CustomerID Product
    101 2 Book
    102 4 Lamp

LEFT JOIN (Customers LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID)

CustomerID Name OrderID Product
1 Anna NULL NULL
2 Bernd 101 Book
3 Clara NULL NULL

PHP Data Objects - PDO

PDO stands for PHP Data Objects and it's a database abstraction layer in PHP. It provides an object-oriented interface to access different types of databases—such as MySQL, PostgreSQL, or SQLitewithout needing to change much of your code.


Key Features of PDO:

Consistent API
Same code style regardless of which database you use.

Prepared Statements
Helps prevent SQL injection via bound parameters:

$stmt = $pdo->prepare("SELECT * FROM users WHERE id = :id");
$stmt->execute(['id' => $userId]);

Transactions Support
Great for use cases like banking systems or other operations that need rollback/commit.

Exception-based Error Handling

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

Easy Database Switching
Switching from MySQL to PostgreSQL? Usually only the DSN and driver need to be changed.


Example: Connecting to MySQL with PDO

$dsn = 'mysql:host=localhost;dbname=testdb;charset=utf8mb4';
$user = 'root';
$pass = '';

try {
    $pdo = new PDO($dsn, $user, $pass);
    $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
    echo "Connected successfully!";
} catch (PDOException $e) {
    echo "Connection failed: " . $e->getMessage();
}

Summary:

PDO is the recommended way to work with databases in modern PHP applications—especially for its security, flexibility, and ease of use.


Random Tech

Tailwind CSS


Unbenannt.png