bg_image
header

Write Back

Write-Back (also known as Write-Behind) is a caching strategy where changes are first written only to the cache, and the write to the underlying data store (e.g., database) is deferred until a later time. This approach prioritizes write performance by temporarily storing the changes in the cache and batching or asynchronously writing them to the database.

How Write-Back Works

  1. Write Operation: When a record is updated, the change is written only to the cache.
  2. Delayed Write to the Data Store: The update is marked as "dirty" or "pending," and the cache schedules a deferred or batched write operation to update the main data store.
  3. Read Access: Subsequent read operations are served directly from the cache, reflecting the most recent change.
  4. Periodic Syncing: The cache periodically (or when triggered) writes the "dirty" data back to the main data store, either in a batch or asynchronously.

Advantages of Write-Back

  1. High Write Performance: Since write operations are stored temporarily in the cache, the response time for write operations is much faster compared to Write-Through.
  2. Reduced Write Load on the Data Store: Instead of performing each write operation individually, the cache can group multiple writes and apply them in a batch, reducing the number of transactions on the database.
  3. Better Resource Utilization: Write-back can reduce the load on the backend store by minimizing write operations during peak times.

Disadvantages of Write-Back

  1. Potential Data Loss: If the cache server fails before the changes are written back to the main data store, all pending writes are lost, which can result in data inconsistency.
  2. Complexity in Implementation: Managing the deferred writes and ensuring that all changes are eventually propagated to the data store introduces additional complexity and requires careful implementation.
  3. Inconsistency Between Cache and Data Store: Since the main data store is updated asynchronously, there is a window of time where the data in the cache is newer than the data in the database, leading to potential inconsistencies.

Use Cases for Write-Back

  • Write-Heavy Applications: Write-back is particularly useful when the application has frequent write operations and requires low write latency.
  • Scenarios with Low Consistency Requirements: It’s ideal for scenarios where temporary inconsistencies between the cache and data store are acceptable.
  • Batch Processing: Write-back is effective when the system can take advantage of batch processing to write a large number of changes back to the data store at once.

Comparison with Write-Through

  • Write-Back prioritizes write speed and system performance, but at the cost of potential data loss and inconsistency.
  • Write-Through ensures high consistency between cache and data store but has higher write latency.

Summary

Write-Back is a caching strategy that temporarily stores changes in the cache and delays writing them to the underlying data store until a later time, often in batches or asynchronously. This approach provides better write performance but comes with risks related to data loss and inconsistency. It is ideal for applications that need high write throughput and can tolerate some level of data inconsistency between cache and persistent storage.

 


Batch

A batch in computing and data processing refers to a group or collection of tasks, data, or processes that are processed together in one go, rather than being handled individually and immediately. It is a collected set of units (e.g., files, jobs, or transactions) that are processed as a single package, rather than processing each unit separately in real-time.

Here are some typical features of a batch:

  1. Collection of tasks: Multiple tasks or data are gathered and processed together.

  2. Uniform processing: All tasks within the batch undergo the same process or are handled in the same manner.

  3. Automated execution: A batch often starts automatically at a specified time or when certain criteria are met, without requiring human intervention.

  4. Examples:

    • A group of print jobs collected and then printed together.
    • A set of transactions processed at the end of the day in a financial system.

A batch is designed to improve efficiency by grouping tasks and processing them together, often during times when system load is lower, such as overnight.

 


Batch Processing

Batch Processing is a method of data processing where a group of tasks or data is collected as a "batch" and processed together, rather than handling them individually in real time. This approach is commonly used to process large amounts of data efficiently without the need for human intervention while the process is running.

Here are some key features of batch processing:

  1. Scheduled: Tasks are processed at specific times or after reaching a certain volume of data.

  2. Automated: The process typically runs automatically, without the need for immediate human input.

  3. Efficient: Since many tasks are processed simultaneously, batch processing can save time and resources.

  4. Examples:

    • Payroll processing at the end of the month.
    • Handling large datasets for statistical analysis.
    • Nightly database updates.

Batch processing is especially useful for repetitive tasks that do not need to be handled immediately but can be processed at regular intervals.

 


Random Tech

SQL Server


1200px-Microsoft_SQL_Server_Logo.svg.png