The Dependency Inversion Principle (DIP) is the last of the five SOLID principles in object-oriented programming and software development. It was formulated by Robert C. Martin and deals with the dependencies between different components and classes in a software system.
The principle states that dependencies should not be on concrete implementations but on abstract abstractions. This means that high-level components should not depend on low-level components. Instead, both high-level and low-level components should depend on an abstract interface or class.
The Dependency Inversion Principle consists of two parts:
High-Level Modules Should Not Depend on Low-Level Modules: This means that the main components or higher levels of an application should not depend on the details or lower-level components. Instead, they should depend on abstract interfaces or classes that are isolated from the details.
Abstractions Should Not Depend on Details: Abstractions, i.e., abstract interfaces or classes, should not depend on concrete implementations or details. The details should depend on the abstractions, allowing different implementations to be swapped without changing the abstractions.
By applying the Dependency Inversion Principle, the coupling between components is reduced, leading to a more flexible and maintainable software. It also enables easier extension and modification of the code, as adding or replacing components only requires changes at the level of the abstract interfaces, without affecting higher-level code.
The DIP is closely related to other SOLID principles, especially the Interface Segregation Principle (ISP) and the Open/Closed Principle (OCP). Using abstract interfaces according to the DIP also promotes the ISP, as each component only uses the specific interfaces it needs. Additionally, the DIP also fosters openness for extension (OCP), as new implementations can be added without modifying existing code, as long as they adhere to the abstract interfaces.