bg_image
header

Data Definition Language - DDL

Data Definition Language (DDL) is a part of SQL (Structured Query Language) that deals with defining and managing the structure of a database. DDL commands modify the metadata of a database, such as information about tables, schemas, indexes, and other database objects, rather than manipulating the actual data.

Key DDL Commands:

1. CREATE
Used to create new database objects like tables, schemas, views, or indexes.
Example:

CREATE TABLE Kunden (
    ID INT PRIMARY KEY,
    Name VARCHAR(50),
    Alter INT
);

2. ALTER
Used to modify the structure of existing objects, such as adding or removing columns.
Example:

ALTER TABLE Kunden ADD Email VARCHAR(100);

3. DROP
Permanently deletes a database object, such as a table.
Example:

DROP TABLE Kunden;

4. TRUNCATE
Removes all data from a table while keeping its structure intact. It is faster than DELETE as it does not generate transaction logs.
Example:

TRUNCATE TABLE Kunden;

Characteristics of DDL Commands:

  • Changes made by DDL commands are automatically permanent (implicit commit).
  • They affect the database structure, not the data itself.

DDL is essential for designing and managing a database and is typically used during the initial setup or when structural changes are required.

 

 

 


Database

A database is a structured collection of data stored and managed electronically. It is used to efficiently organize, store, retrieve, and process information. In a database, data is organized into tables or records, with each record containing information about a specific object, event, or topic.

Databases play a central role in information processing and management in businesses, organizations, and many aspects of daily life. They provide a means to store and retrieve large amounts of data efficiently and allow for the execution of complex queries to extract specific information.

There are different types of databases, including relational databases, NoSQL databases, object-oriented databases, and more. Each type of database has its own characteristics and use cases, depending on the requirements of the specific project or application.

Relational databases are one of the most common types of databases and use tables to organize data into rows and columns. They use SQL (Structured Query Language) as a query language to retrieve, update, and manage data. Well-known relational database management systems (RDBMS) include MySQL, Oracle, SQL Server, and PostgreSQL.

NoSQL databases, on the other hand, are more flexible and can store unstructured or semi-structured data, making them better suited for specific applications, such as Big Data or real-time web applications.

In summary, a database is a central tool in modern data processing, playing a vital role in storing, organizing, and managing information in digital form.

 


Relational Database Management System - RDBMS

A Relational Database Management System (RDBMS) is a type of database management software that is based on the relational database model. It is a widely used type of database management system in the IT industry and is used in many applications.

The key features of an RDBMS include:

  1. Tables: Data is organized into tables, with each table having specific columns and rows. Columns represent different attributes of the data, while rows represent individual records.

  2. Primary Key: Typically, a column is designated as the primary key in each table to ensure the uniqueness of each row. The primary key is used to identify rows and establish relationships between tables.

  3. Relationships: RDBMS allow for the definition of relationships between tables, enabling data in different tables to be linked for complex queries and analyses.

  4. SQL (Structured Query Language): SQL is used to access data in an RDBMS. It enables querying, inserting, updating, and deleting data.

  5. Data Integrity: RDBMS provide mechanisms to ensure data integrity, including foreign key constraints, unique constraints, and transaction control.

Examples of widely used RDBMS systems include MySQL, PostgreSQL, Oracle Database, Microsoft SQL Server, and IBM Db2. RDBMS are employed in a variety of applications, including enterprise systems, e-commerce websites, financial systems, warehouse management systems, and more, where structured data needs to be efficiently and securely managed.

 


Structured Query Language - SQL

SQL stands for "Structured Query Language," and it is a specialized programming language primarily used for managing and querying databases. SQL is a crucial component in the world of databases and is supported by many relational database management systems like MySQL, PostgreSQL, Microsoft SQL Server, Oracle Database, and SQLite.

SQL allows users to create, edit, query, and delete data in a database. Here are some of the basic tasks that can be performed with SQL:

  1. Data Query: SQL enables you to query data from a database to extract information, typically using SELECT statements.

  2. Data Modification: You can update data in a database to modify, add, or delete existing records using UPDATE, INSERT, and DELETE statements.

  3. Database Management: You can create, modify, and delete databases, as well as manage user permissions and security settings.

  4. Database Structure: SQL allows you to define the structure of a database, including tables, indexes, relationships, and constraints.

SQL is a standardized language, meaning that the fundamental principles and syntax are largely the same in most relational database management systems. However, there are also differences and extensions supported by various database systems. Developers use SQL to access and manipulate structured data, which is crucial in a wide range of applications and systems.

 


Redis

redis

Redis is a powerful and fast in-memory database that serves as a key-value store. The name "Redis" stands for "Remote Dictionary Server." It was originally developed by Salvatore Sanfilippo and is an open-source software released under the BSD license.

In general, Redis is used for a variety of use cases, including:

  1. Caching: Redis can be used as a cache for frequently accessed data to improve application performance and reduce the load on databases.

  2. Real-time data analytics: Due to its ability to read and write data quickly, Redis is often used for processing and analyzing real-time data.

  3. Session management: Since Redis stores data in memory and allows very fast access to it, it can be used as a reliable session store.

  4. Message Broker: Redis also provides features for the Pub/Sub messaging paradigm (Publisher/Subscriber), making it suitable as a lightweight message broker to distribute messages between different parts of a system.

  5. Geospatial data processing: Redis has support for geospatial information and can be used to store and query geographical data.

  6. Counting and ranking: Redis offers data structures like counters and sorted sets that are useful for ranking and statistical applications.

An important feature of Redis is that it keeps data entirely in memory, which makes read and write access very fast. However, this speed comes at the cost of data storage capacity, as the data is only available as long as Redis is running and there is enough memory space. Nonetheless, Redis also provides mechanisms for persistence to store data on disk and restore the database upon restart.

Due to its simplicity, speed, and flexibility, Redis has become a popular solution used in many modern applications to provide powerful and scalable data storage solutions.