bg_image
header

ACID

ACID is an acronym that describes four key properties essential for the reliability of database transactions in a database management system (DBMS). These properties ensure the integrity of data and the consistency of the database even in the event of errors or system crashes. ACID stands for:

  1. Atomicity:

    • Every transaction is treated as an indivisible unit. This means that either the entire transaction is completed successfully, or none of it is. If any part of the transaction fails, the entire transaction is rolled back, and the database remains in a consistent state.
  2. Consistency:

    • Every transaction takes the database from one consistent state to another consistent state. This means that after a transaction completes, all integrity constraints of the database are satisfied. Consistency ensures that no transaction leaves the database in an invalid state.
  3. Isolation:

    • Transactions are executed in isolation from each other. This means that the execution of one transaction must appear as though it is the only transaction running in the system. The results of a transaction are not visible to other transactions until the transaction is complete. This prevents concurrent transactions from interfering with each other and causing inconsistencies.
  4. Durability:

    • Once a transaction is completed (i.e., committed), its changes are permanent, even in the event of a system failure. Durability is typically ensured by writing changes to non-volatile storage such as disk drives.

Example for Clarification

Consider a bank database with two accounts: Account A and Account B. A transaction transfers 100 euros from Account A to Account B. The ACID properties ensure the following:

  • Atomicity: If the transfer fails for any reason (e.g., a system crash), the entire transaction is rolled back. Account A is not debited, and Account B does not receive any funds.
  • Consistency: The transaction ensures that the total amount of money in both accounts remains the same before and after the transaction (assuming no other factors are involved). If Account A initially had 200 euros and Account B had 300 euros, the total balance of 500 euros remains unchanged after the transaction.
  • Isolation: If two transfers occur simultaneously, they do not interfere with each other. Each transaction sees the database as if it is the only transaction running.
  • Durability: Once the transaction is complete, the changes are permanent. Even if a power failure occurs immediately after the transaction, the new balances of Account A and Account B are preserved.

Importance of ACID

The ACID properties are crucial for the reliability and integrity of database transactions, especially in systems dealing with sensitive data, such as financial institutions, e-commerce platforms, and critical business applications. They help prevent data loss and corruption, ensuring that data remains consistent and trustworthy.

 


Create Read Update Delete - CRUD

CRUD is an acronym for the four basic operations used in data processing and database management. CRUD stands for:

  1. Create: Adding new data or records to a database or system.
  2. Read: Retrieving or reading data or records from a database or system.
  3. Update: Modifying or editing existing data or records in a database or system.
  4. Delete: Removing data or records from a database or system.

These four operations are fundamental for managing persistent data in applications, whether in relational databases, NoSQL databases, or other data storage systems. CRUD operations form the foundation of many software applications, especially those that heavily utilize databases, such as web applications, business applications, and many other types of software systems.

In practice, CRUD operations are often implemented using specific commands or methods of a programming language or a database system. For example, SQL commands such as INSERT, SELECT, UPDATE, and DELETE in a relational database.

 


Fifth Normal Form - 5NF

The Fifth Normal Form (5NF) is a concept in database theory aimed at structuring database tables to minimize redundancy and anomalies. The 5NF builds upon the previous normal forms, particularly the Fourth Normal Form (4NF).

In 5NF, join dependencies are taken into account. A join dependency occurs when two or more attributes in a table depend on each other, but not directly; rather, they are connected through another table via a join operation.

A table is in 5NF if it is in 4NF and does not have any non-trivial join dependencies. Trivial join dependencies are those that are already implied by the primary key or superkeys. Non-trivial join dependencies indicate an additional relationship between the attributes that is not determined by the keys.

Applying 5NF helps further normalize databases and optimize their structure, leading to better data integrity and consistency.

 


Fourth Normal Form - 4NF

The Fourth Normal Form (4NF) is a concept in database theory aimed at structuring database tables to reduce redundancy and anomalies. It builds upon the principles of the first three normal forms (1NF, 2NF, and 3NF).

The 4NF aims to address Multivalued Dependency (MVD), which occurs when a table contains attributes that do not depend on a primary key but are related to each other beyond the primary key. When a table is in 4NF, it means it is in 3NF and does not contain MVDs.

In practice, this means that in a 4NF table, each non-key attribute combination is functionally dependent on every one of its superkeys, where a superkey is a set of attributes that uniquely identifies a tuple in the table. Achieving 4NF can make databases more efficiently designed by minimizing redundancies and maximizing data integrity.

 


Boyce Codd Normal Form - BCNF

The Boyce-Codd Normal Form (BCNF) is a normalization form in relational database theory that aims to eliminate redundancy and anomalies in a database. It is a stricter form of the Third Normal Form (3NF) and is often considered an extension of it.

A relation (table) is in Boyce-Codd Normal Form if it meets the following conditions:

  1. The relation is in Third Normal Form (3NF): This means it is already in First and Second Normal Form, and there are no transitive dependencies between the attributes.

  2. Every non-trivial functional dependency X→Y has a superkey as the determinant: This means that for every functional dependency where X is the set of attributes determining Y, X must be a superkey. A superkey is a set of attributes that can uniquely identify the entire relation.

Differences from Third Normal Form (3NF)

While Third Normal Form requires that any attribute not part of the primary key must be directly dependent on it (not transitively through another attribute), BCNF goes a step further. It requires that all determinants (the left-hand side of functional dependencies) must be superkeys.

Example

Consider a relation R with attributes A, B, and C, and the following functional dependencies:

  • A→B
  • B→C

To check if this relation is in BCNF, we proceed as follows:

  • We observe that A→B is not problematic if A is a superkey.
  • However, B→C is problematic if B is not a superkey, as B in this case cannot uniquely identify the entire relation.

If B is not a superkey, the relation is not in BCNF and must be decomposed into two relations to meet BCNF requirements:

  • One relation containing B and C
  • Another relation containing A and B

Summary

The Boyce-Codd Normal Form is stricter than the Third Normal Form and ensures that there are no functional dependencies where the left-hand side is not a superkey. This helps to avoid redundancy and anomalies in the database structure and ensures data integrity.

 


Third Normal Form - 3NF

The Third Normal Form (3NF) is a stage in database normalization aimed at minimizing redundancies and ensuring data integrity. A relation (table) is in Third Normal Form if it satisfies the following conditions:

  1. The relation is in Second Normal Form (2NF):

    • This means the relation is in First Normal Form (1NF) (all attribute values are atomic, no repeating groups).
    • All non-key attributes are fully functionally dependent on the entire primary key, not just part of it.
  2. No transitive dependencies:

    • No non-key attribute depends transitively on a candidate key. This means a non-key attribute should not depend on another non-key attribute.

In detail, for a relation R to be in 3NF, for every non-key attribute A and every candidate key K in R, the following condition must be met:

Example:

Suppose we have a Students table with the following attributes:

  • Student_ID (Primary Key)
  • Name
  • Course_ID
  • Course_Name
  • Instructor

In this table, the attributes Course_Name and Instructor might depend on Course_ID, not directly on Student_ID. This is an example of a transitive dependency because:

  • Student_IDCourse_ID
  • Course_IDCourse_Name, Instructor

To convert this table to 3NF, we eliminate transitive dependencies by splitting the table. We could create two tables:

  1. Students:

    • Student_ID (Primary Key)
    • Name
    • Course_ID
  2. Courses:

    • Course_ID (Primary Key)
    • Course_Name
    • Instructor

Now, both tables are in 3NF because each non-key attribute depends directly on the primary key and there are no transitive dependencies.

By achieving Third Normal Form, data consistency is increased, and redundancies are reduced, which improves the efficiency of database operations.

 


Second Normal Form - 2NF

The second normal form (2NF) is a concept in database normalization, a process used to organize data in a relational database to minimize redundancy and ensure data integrity. To transform a relation (table) into the second normal form, the following conditions must be met:

  1. The relation must be in the first normal form (1NF): This means the table should not contain any repeating groups, and all attributes must be atomic (each attribute contains only one value).

  2. Every non-key attribute must depend fully on the entire primary key: This means no non-key attribute should depend on just a part of a composite key. This rule aims to eliminate partial dependencies.

Example of Second Normal Form

Let's assume we have an Orders table with the following attributes:

  • OrderID (Primary Key)
  • ProductID (part of the composite key)
  • CustomerName
  • CustomerAddress
  • ProductName
  • Quantity

In this case, the composite key would be OrderID, ProductID because an order can contain multiple products.

To bring this table into the second normal form, we need to ensure that all non-key attributes (CustomerName, CustomerAddress, ProductName, Quantity) fully depend on the entire composite key. If this is not the case, we need to split the table.

Step 1: Decompose the Orders table:

  1. Create an Orders table with the attributes:

    • OrderID (Primary Key)
    • CustomerName
    • CustomerAddress
  2. Create an OrderDetails table with the attributes:

    • OrderID (Foreign Key)
    • ProductID (part of the composite key)
    • ProductName
    • Quantity

Now we have two tables:

Orders:

  • OrderID (Primary Key)
  • CustomerName
  • CustomerAddress

OrderDetails:

  • OrderID (Foreign Key)
  • ProductID (Primary Key)
  • ProductName
  • Quantity

By splitting the original table this way, we have ensured that all non-key attributes in the Orders and OrderDetails tables fully depend on the primary key. This means both tables are now in the second normal form.

Applying the second normal form helps to avoid update anomalies and ensures a consistent data structure.

 


First Normal Form - 1NF

The first normal form (1NF) is a rule in relational database design that ensures a table inside a database has a specific structure. This rule helps to avoid redundancy and maintain data integrity. The requirements of the first normal form are as follows:

  1. Atomic Values: Each attribute (column) in a table must contain atomic (indivisible) values. This means each value in a column must be a single value, not a list or set of values.
  2. Unique Column Names: Each column in a table must have a unique name to avoid confusion.
  3. Unique Row Identifiability: Each row in the table must be uniquely identifiable. This is usually achieved through a primary key, ensuring that no two rows have identical values in all columns.
  4. Consistent Column Order: The order of columns should be fixed and unambiguous.

Here is an example of a table that is not in the first normal form:

CustomerID Name PhoneNumbers
1 Alice 12345, 67890
2 Bob 54321
3 Carol 98765, 43210, 13579

In this table, the "PhoneNumbers" column contains multiple values per row, which violates the first normal form.

To bring this table into the first normal form, you would restructure it so that each phone number has its own row:

CustomerID Name PhoneNumber
1 Alice 12345
1 Alice 67890
2 Bob 54321
3 Carol 98765
3 Carol 43210
3 Carol 13579

By restructuring the table this way, it now meets the conditions of the first normal form, as each cell contains atomic values.

 


Normal Forms

In database theory, normal forms are a series of guidelines used to standardize the structure of relational database schemas to minimize redundancy and avoid anomalies in data operations. The most important normal forms range from the first to the fifth normal form (1NF to 5NF) and the Boyce-Codd Normal Form (BCNF). Here is an overview:

  1. First Normal Form (1NF):

    • Definition: A relation schema is in 1NF if all attribute values are atomic, meaning each attribute contains only indivisible values.
    • Goal: Eliminate repeating groups and ensure that the data is in tabular form.
  2. Second Normal Form (2NF):

    • Definition: A relation schema is in 2NF if it is in 1NF and every non-key attribute is fully functionally dependent on the entire primary key.
    • Goal: Eliminate partial dependencies, where a non-key attribute depends on part of a composite primary key.
  3. Third Normal Form (3NF):
    • Definition: A relation schema is in 3NF if it is in 2NF and no non-key attribute is transitively dependent on the primary key.
    • Goal: Eliminate transitive dependencies to ensure non-key attributes depend only on the primary key.
  4. Boyce-Codd Normal Form (BCNF):
    • Definition: A relation schema is in BCNF if it is in 3NF and every non-trivial functional dependency X→Y (where Y is not a subset of X) implies that X is a superkey.
    • Goal: A stricter form of 3NF to avoid all dependency anomalies.
  5. Fourth Normal Form (4NF):
    • Definition: A relation schema is in 4NF if it is in BCNF and has no non-trivial multi-valued dependencies.
    • Goal: Eliminate multi-valued dependencies where an attribute depends on another attribute and also has multiple independent values.
  6. Fifth Normal Form (5NF):
    • Definition: A relation schema is in 5NF if it is in 4NF and every join dependency in the schema is implied by the candidate keys.
    • Goal: Eliminate join dependencies to ensure relations can be decomposed and recombined without information loss.

These normal forms aim to optimize data structures, minimize redundancy, and ensure data integrity. While not all normal forms are applied in practice to the highest level, they provide a theoretical foundation for designing robust and efficient databases.

 


QuestDB

QuestDB is an open-source time series database specifically optimized for handling large amounts of time series data. Time series data consists of data points that are timestamped, such as sensor readings, financial data, log data, etc. QuestDB is designed to provide the high performance and scalability required for processing time series data in real-time.

Some of the key features of QuestDB include:

  1. Fast Queries: QuestDB utilizes a specialized architecture and optimizations to enable fast queries of time series data, even with very large datasets.

  2. Low Storage Footprint: QuestDB is designed to efficiently utilize storage space, particularly for time series data, leading to lower storage costs.

  3. SQL Interface: QuestDB provides a SQL interface, allowing users to create and execute queries using a familiar query language.

  4. Scalability: QuestDB is horizontally scalable and can handle growing data volumes and workloads.

  5. Easy Integration: QuestDB can be easily integrated into existing applications, as it supports a REST API as well as drivers for various programming languages such as Java, Python, Go, and others.

QuestDB is often used in applications that need to capture and analyze large amounts of time series data, such as IoT platforms, financial applications, log analysis tools, and many other use cases that require real-time analytics.

 


Random Tech

Codeception


1288753.png